- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Thebaud, Thomas (2)
-
Dehak, Najim (1)
-
Hussein, Amir (1)
-
Jahan, Maliha (1)
-
Khudanpur, Sanjeev (1)
-
Moro-Velazquez, Laureano (1)
-
Verma, Neha (1)
-
Villalba, Jesús (1)
-
Wiesner, Matthew (1)
-
Xiao, Cihan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ensuring that technological advancements benefit all groups of people equally is crucial. The first step towards fairness is identifying existing inequalities. The naive comparison of group error rates may lead to wrong conclusions. We introduce a new method to determine whether a speaker verification system is fair toward several population subgroups. We propose to model miss and false alarm probabilities as a function of multiple factors, including the population group effects, e.g., male and female, and a series of confounding variables, e.g., speaker effects, language, nationality, etc. This model can estimate error rates related to a group effect without the influence of confounding effects. We experiment with a synthetic dataset where we control group and confounding effects. Our metric achieves significantly lower false positive and false negative rates w.r.t. baseline. We also experiment with VoxCeleb and NIST SRE21 datasets on different ASV systems and present our conclusions.more » « less
-
Hussein, Amir; Xiao, Cihan; Verma, Neha; Thebaud, Thomas; Wiesner, Matthew; Khudanpur, Sanjeev (, Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023))
An official website of the United States government
